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Abstract
Machine learning methods have been widely used for early diagnosis of Alzheimer’s disease (AD) via functional connectivity
networks (FCNs) analysis from neuroimaging data. The conventional low-order FCNs are obtained by time-series correlation of
the whole brain based on resting-state functional magnetic resonance imaging (R-fMRI). However, FCNs overlook inter-region
interactions, which limits application to brain disease diagnosis. To overcome this drawback, we develop a novel framework to
exploit the high-level dynamic interactions among brain regions for early AD diagnosis. Specifically, a sliding window approach
is employed to generate some R-fMRI sub-series. The correlations among these sub-series are then used to construct a series of
dynamic FCNs. High-order FCNs based on the topographical similarity between each pair of the dynamic FCNs are then
constructed. Afterward, a local weight clusteringmethod is used to extract effective features of the network, and the least absolute
shrinkage and selection operationmethod is chosen for feature selection. A support vector machine is employed for classification,
and the dynamic high-order network approach is evaluated on the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset.
Our experimental results demonstrate that the proposed approach not only achieves promising results for AD classification, but
also successfully recognizes disease-related biomarkers.
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Introduction

Among the neurodegenerative diseases of the brain,
Alzheimer’s disease (AD) is one of the most common demen-
tia, and it accounts for 60–80% of all dementia patients. AD is
a chronic and progressive disease with a variety of higher-
order cortical dysfunctions with cognitive function decline,
reduced judgment and memory ability, and eventually leads
to death. According to the World Alzheimer Report 2018,
there are about 5.7 million people with AD in the United
States. This number accounts for about 2% of the US popula-
tion. It is estimated that the number of patients will reach 13.8
million (Alzheimer 2018) by 2050. China has the largest num-
ber of AD patients in the world, with over 9.5 million patients.
Studies show that the global cost of dementia in 2015 exceeds
975.56 billion US dollars, which is much higher than the es-
timated value of 800 billion US dollars reported by the World
Alzheimer Report in 2015. This cost will reach 2.54 trillion
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US dollars by 2030 (Jia et al. 2018). Most of AD patients rely
on others’ assistance to maintain a normal life, which imposes
a huge burden to caregivers, including social life, psycholog-
ical aspects, physical activities and economic pressure. AD
has become a global problem, and it is of high urgency to find
the pathogenesis of AD for early diagnosis and treatment.
Mild cognitive impairment (MCI) is the early stage of AD.
The annual conversion rate of MCI to AD is as high as 10–
15%, while the annual conversion rate of healthy people to
AD is only 1–2%. It is possible to delay AD progression in
MCI patients after certain cognitive training and rehabilitation
treatment, and some patients can even return to the normal
state. However, once entering the AD stage, there are no
known effective therapeutic drugs developed at present, and
this process is irreversible. It was found that AD could start
20 years of preclinical diagnosis (Visser and Tijms 2017),
which can be further classified as significant memory concern
(SMC), early MCI (EMCI), and late MCI (LMCI). By early
diagnosis and intervention treatment, it is possible to delay the
onset of AD, reduce the suffering of patients, and reduce the
burden on the family and society.

To diagnose AD (Zhou et al. 2019b), the neuroimaging
technique is an effective tool. Magnetic resonance imaging
(MRI), safe and non-invasive real-time imaging of the brain,
has opened up new ways for early diagnosis of AD (Shi et al.
2017)by locating changes of imaging markers in the brain. As
one of the MRI technologies, the functional MRI (fMRI)
(Huettel et al. 2004) has been widely used in the research of
brain diseases. The brain activities are associatedwith contrac-
tion and relaxation of blood vessels in the brain, which chang-
es blood flow velocity and oxygen levels. The fMRI measures
these hemodynamic changes, and real-time in vivo imaging of
brain functions is performed using blood oxygenation level
dependence (BOLD) (Ogawa et al. 1990). The fMRI uses a
non-radioactive imaging modality with high spatial and tem-
poral resolution and can provide effective functional informa-
tion for the early diagnosis of AD.

According to the latest study, there are about 86 billion
neurons in the normal adult brain (Herculano-Houzel 2012),
and there are various neurons in the brain. Many neurons
connect with each other through synapses, which forms a
complex, multi-level and multi-functional brain network.
Because of this characteristic structure, the brain forms a huge
center of information transmission, exchange, storage, and
calculation. If a neuron is treated as a node and the connec-
tions between neurons is treated as edges, the brain is essen-
tially a complex neural network. At the micro scale, this is a
huge complex network and can be solved by connectomics.
To facilitate brain functionality analysis, brain atlases can
greatly reduce the complexity of brain network connectivity
at the macro scale and for the research and interpretation of
brain diseases. Network analysis can reliably quantify brain
networks with a few neurobiological measures easy to

compute. Meanwhile, by clearly defining anatomical connec-
tivity networks and functional connectivity networks (FCNs)
on the same atlas of brain regions, network analysis can ex-
plore the relationship between structure and FCNs. By com-
paring the structure or functional network topology among
subjects, we can further reveal the abnormal connections be-
tween neurological and mental diseases. Therefore, network
construction and analysis methods are widely used in early
diagnosis and prediction of brain diseases (Qi et al. 2015;
Wang et al. 2010; Zhu et al. 2018b).

For brain disease analysis, Biswal et al. found that the time-
series of low-frequency fluctuations in the resting brain have
high temporal correlation between some brain regions, which
can be a manifestation of brain functional connectivity
(Biswal et al. 1995). Friston defined functional connectivity
as the temporal correlation of the activation neurons in dis-
sected brain regions to reflect the level of functional commu-
nication between brain regions (Friston 2011). Researchers
are using FCNs method not only to discover the high-order
between left and right hemisphere motor cortex in the function
of the connection, but also to find new functional brain net-
works, such as visual network, auditory network, language,
and cognitive network (van den Heuvel and Hulshoff Pol
2010). These studies have shown there are a large number of
spontaneous activities even when the FCNs are not idle. In
addition, these activities are highly correlated among different
brain regions. Later, many researchers applied the FCNs
method to the functional disconnection analysis of neurolog-
ical and mental diseases, such as AD (Greicius et al. 2004),
Parkinson’s disease (Niethammer et al. 2012), schizophrenia
(Jafri et al. 2008), Autism (Wang et al. 2017; Weng et al.
2010), and depression (Lui et al. 2011). Zhou et al. (2019a)
exploited the underlying association among different modali-
ties by projecting to a latent feature space, which achieves
good performance in the classification of MCI. The above
studies provided sufficient evidence to prove the reliability
of the functional connectivity analysis methods.

Graph theory has been generally used in brain network
analysis (Bullmore and Sporns 2009; Rubinov and Sporns
2010; Zhu et al. 2018a). The degree of a node, as the most
basic network measurement parameter, is often defined as the
number of other nodes connected to this node(Zhu et al.
2018b). Distribution of nodes in the network forms the degree
distribution concept. It is found that the brain is a power-law
degree distribution network form, and random network medi-
um has an equal probability distribution, which illustrates the
brain network has small world properties. Compared with the
random network with higher overall efficiency, the brain net-
work has higher local efficiency (Bassett and Bullmore 2006).
The clustering coefficient is the ratio of the number of con-
nected edges between the nearest neighbor nodes to the num-
ber of all possible connected edges, which is used to describe
the efficiency of the network. The above network evaluation
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are often compared between patients with encephalopathy and
normal subjects for inter-group statistical analysis to find ab-
normal connections in brain areas(Shi et al. 2018). However,
this method cannot analyze and diagnose a single subject.
Different from the traditional graph theory methods, machine
learning provides a new way of thinking through multivariate
mode analysis, which can analyze individual subjects.
Therefore, many researchers have carried out their research
on brain network analysis using machine learning methods
(Zhang et al. 2018; Zheng et al. 2018).

Machine learning analysis of brain network is mainly di-
vided into four parts: the construction of brain network, fea-
ture extraction, feature learning, and classifier learning. This
paper focuses on the research of brain network learning. The
traditional low-order functional brain network is based on the
correlation of whole brain time series of R-fMRI, which ig-
nores the dynamic changes of connections among brain re-
gions and limits its application in the diagnosis of brain dis-
eases. To overcome this limitation, many researchers have
explored the dynamic network methods, including sliding
window methods (Allen et al. 2014; Damaraju et al. 2014),
wavelet transform coherence methods (Chang and Glover
2010; Yaesoubi et al. 2015), and dynamic conditional corre-
lation methods (Lindquist et al. 2014). The dynamic network
provides a new research direction to study the brain network.
In addition, some hybrid networks have been proposed for
early diagnosis of AD. For example, Zhang et al (Zhang
et al. 2017)propose a novel approach called “hybrid high-
order FC networks” to characterize previously untouched
inter-level interaction between the low- and the high-order
FC networks. This method combined high-order with low-
order brain networks and improves the accuracy of classifica-
tion in some extent. However, such methods have certain lim-
itations since it ignore the dynamic changes of connections
among brain regions. Motivated by the aforementioned
works, in this study, we use the high-order dynamic interac-
tion features among brain regions for early classification of
AD. Compared to hybrid networks, ours model has both high-
order and dynamic characteristics and provides more charac-
teristic information (e.g. dynamic information). Specifically,
we adopt a sliding window method to generate subsequences
of fluctuation signals in brain regions and construct a dynamic
functional brain network by calculating the correlation among
these subsequences. Then, we further construct a dynamic
high order network based on the topological similarity be-
tween the paired dynamic networks. The local weight cluster-
ing coefficient (Rubinov and Sporns 2010) is used to extract
network features, and feature selection is conducted by the
least absolute shrinkage and selection operation (LASSO)
method (Tibshirani 1996). Finally, the linear kernel support
vector machine (SVM) is selected as the classifier (Chang and
Lin 2011), and the leave-one-out cross-validation method is
applied for model validation. This paper experiments based on

the Alzheimer’s disease neuroimaging initiative (ADNI) data-
base (Mueller et al. 2005). The experiments verify the effec-
tiveness of the high-order dynamic network method by com-
paring four groups of network construction methods.
Specifically, static low-order functional network (s-LON),
static high-order functional network (s-HON), dynamic low-
order functional network (d-LON), and dynamic high-order
functional network (d-HON). Overall, the contributions of this
paper are summarized:

1) To our best knowledge, this is the first attempt using
dynamic high-order model for early diagnosis of AD.

2) Local weight clustering method is used for feature extrac-
tion, which focuses on the local network density.
Compared with local clustering method, the local weight
clustering coefficient considers the influence of the
weights during the process of network learning, which
can effectively learn network feature for model
classification.

3) A feature selection LASSO method is used. This method
applies statistical criteria like filtering model to select sev-
eral candidate feature subsets with a cardinality and the
subset with the highest classification accuracy is selected
with the wrapping model.

Materials and methods

Subjects and data acquisition

In this study, all the data are from the ADNI database (adni.
loni.usc.edu), and the detailed statistical information is shown
in Table 1. A total of 170 subjects are included in the exper-
iment, including 38 LMCI patients, 44 EMCI patients, 44
SMC patients and 44 normal control (NC). All patients are
scanned by a 3 TMRI scanner across various sites using these
parameters: imaging matrix =64 × 64, 48 slices, 180 volumes,
and voxel thickness = 3.3 mm.

Data preprocessing

The R-fMRI data preprocessing procedure is performed using
GRETNA toolbox (Wang et al. 2015). To keep magnetization
equilibrium, we discard the first 10 acquired R-fMRI volumes
of each subject. The remaining 170 volumes are corrected for

Table 1 Summary of the subjects’ information used in this study

Group LMCI (38) EMCI (44) SMC(44) NC(44)

Male/Female 19 M/19F 22 M/22F 22 M/22F 22 M/22F

Age (mean±SD) 76.0±7.6 76.5±6.1 76.3±5.4 76.5±4.5
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the staggered order of slice acquisition during echo-planar
scanning by matching all time points to intermediate time
points. Afterward, the head-motion artifacts in the R-fMRI
time-series are removed by the first volume of each subject
as a reference to register all these volumes. After registration,
the volumes are normalized to the MNI atlas space and
resampled to the voxel size of 3 × 3 × 3 mm. After spatial
normalization, we spatially smooth the dataset with a 4 mm
full width half maximum Gaussian kernel followed by band-
pass filtering of frequency interval (0.01 Hz ≤ f ≤ 0.08 Hz) to
minimize the effects of low-frequency drift and high-
frequency noise. Each regional mean time series is regressed
against the average cerebrospinal fluid, white-matter signals
and the six parameters from motion correction.

A parcellation of the brain space into 90 ROIs is then per-
formed by warping the automated anatomical labelling (AAL)
(Tzourio-Mazoyer et al. 2002) atlas to the R-fMRI images.
Finally, we obtain the time series of each individual ROI of
each subject via the time series over all the voxels in that
particular ROI. As Fig.1 shows, before feature selection, the
ROI feature dimension is 90. After feature selection, the fea-
ture dimension is not fixed, we select the ROI features accord-
ing to the weights based on LASSO method.

Network construction and analysis

Construction of the static low-order FCNs

In this paper, we construct the functional connectivity using
pairwise Pearson correlation coefficients (PCC) between the
ROI pairs. We consider the ROIs as nodes and PCC as edges
connecting them.We can calculate PCC using:

PCCij¼corr x ið Þ; x jð Þf g; ð1Þ

where corr is the pairwise correlation coefficient between x(i)
and x(j).

Construction of the dynamic low-order FCNs

To obtain the dynamic FCNs, a sliding window approach
is used to segment the entire R-fMRI time series into
multiple sub-series. Given that an R-fMRI time series
with M volumes, D = [(M − L) s] + 1 is the number of
sub-series that can be generated, where L denotes the
length of a sliding window and s denotes the step size,
N denotes the number of subjects, the d-th sub-series is
represented in the form of a matrix

x dð Þ ¼ x dð Þ
1 ; x dð Þ

2 ;…; x dð Þ
N

n o
∈ℝd�N ; d ¼ 1; 2;…;D, and R =

90 is the total number of ROIs. A symmetric connectivity

matrix c dð Þ ¼ c dð Þ
ij

h i
∈ℝR�R can be constructed using x(d),

where each element in the connectivity matrix defines the
correlation strength between different ROIs. Specifically,
the correlation strength is defined as:

c dð Þ
ij ¼ corr x dð Þ ið Þ; x dð Þ jð Þ

n o
; ð2Þ

where corr{·} computes the correlation between region i
and region j of the d-th sub-series. Then, the entry for the

temporal FCNs matrix C dð Þ ¼ c dð Þ
1 ; c dð Þ

2 ;…; c dð Þ
N

n o
∈ℝ1�N .

The traditional FCNs is an extreme case where window
length is maximized to the entire time scale (L = M).
Figure 2 illustrates the generation of ROIs sub-series
using the sliding window based on the PCC of R-fMRI
data.

R-fMRI data

AAL 

template

Regional mean

 time series

High-order sub-networks

Stacked feature

LASSO

SVM

WLCC

(a) Data preprocessing (b) Construct connectivity networks

(c) Feature extraction and selection(d)  Classification

Fig. 1 The proposed framework
of dynamic high order connected
network for MCI identification
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Construction of the dynamic high-order FCNs

In the previous subsection, we construct FCNs using a sliding
window technique. However, our main goal is to reveal high-
level information and intrinsic relationships. Therefore, the
FCNs is first built dynamically using the d-th R-fMRI time
sub-series (d = 1,2, …,D ). We then construct high-order
FCNs based on topographical similarities between each sub-
networks c(d) pair. The dynamic high-order FCNs can be
equivalently written as:

hn
dð Þ ¼ cn

dð Þ
� �T

cn
dð Þ; ð3Þ

where hn
(d) denotes dynamic high-order FCNs of the d-th sub-

networks in the n-th subjects. Figure 3 illustrates the construc-
tion of the high-order FCNs.

Feature extraction and selection

After obtaining the dynamic high-order network, we utilize
the method of local weight clustering coefficient to extract
discriminant features of the functional brain network. This
method quantifies the clustering of each node in the weighted
network. Compared with the local clustering coefficient, it can
represent the network more effectively, and the influence of
the network weight is considered in the calculation process.
We adopt local weight clustering coefficients to extract fea-
tures from FCNs. The method quantifies the “cliqueness” of
each node in a weighted network. A clique is originally a
graph-theoretic concept, and refers to the the network’s local
topology for every node. This metric has been widely used for
feature extraction in MCI diagnosis (Chen et al. 2016). Given

a network with K vertices, the weight of the edge connecting
vertex i and vertex j is denoted as wij(1 ≤ i, j ≤K), for each
network wij , the i-th node is

f i ¼
2∑ j: j∈εi wij

� �1
3

jεij jεij−1ð Þ ; ð4Þ

where εi denotes the set of vertices directly connected to ver-
tex i and ∣εi∣ is the number of elements in εi. After extracting
the features from all the nodes, we concatenate them to form
the feature vector. Then a supervised feature selection strategy
based on LASSO is adopted to select the most discriminative
features, while discarding redundant ones. LASSO can
achieve the same precision as wrapping and the same efficien-
cy as filtering. While eliminating redundant features, the most
discriminative features are selected. LetF ∈ℝN ×K be the sam-
ple feature matrix, where N is the number of samples and K is
the number of features extracted by the method and y ∈ℝN is
the label vector of samples, the LASSO regression can be
formulated using the following objective function:

min w;bð Þ
1
2

Fwþ b−yk k2 þ λ wk k1; ð5Þ

where wi is the weight for the i-th feature, b is a bias term, λ is
a balance parameter controlling the model sparsity based on
the l1-norm regularization. The features corresponding to non-
zero LASSO regression coefficients are retained as crucial
features for classification. The SLEP toolbox (Liu et al.
2009) is used to implement feature selection.

Classification

After the features with discriminant power are selected by
LASSO method, the selected features are used to train SVM
for identification. The SVM classifier optimization function
can be expressed as:

minw;β;a
1

2
wTwþ C ∑

n

p¼1
ap ð6Þ

s:t:yp wTxp þ β
� �

≥1−ap; ap≥0; p ¼ 1;…; n:

Through the Lagrange duality transformation, the final ob-
jective function is

L w;β; að Þ ¼ ∑n
p¼1ap−

1

2
∑n

p;q¼1ypyqapaqK xp; xq
� � ð7Þ

s:t:K xp; xq
� � ¼ xp

Txq;

w ¼ ∑l
p¼1apypxp;∑

l
p¼1apyp ¼ 0;

0≤ap≤C; p ¼ 1;…; n

where K xp; xq
� �

represents a linear kernel function, yp-
∈ {−1, +1} is the label, n is the training sample, a

p
and

( )( )c d T
n

( )( )c d
n

( )( )h d
n

Low-order FCNs High-order FCNs

Fig. 3 Constructing high-order FCNs

M

ROIs time series

L

s

Fig. 2 Generation of the ROIs sub-series using the sliding window
approach
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are the training parameter.
The steps to solve Eq.(7) are: First, according to the formu-

la seven, we find the minimum values of w and β. Second,
according to Eq.(7), we find the maximum values of α.
Finally, the sequence minimum optimization algorithm (Fan
et al. 2005) is used to solve the Lagrange multiplier in the dual
problem. Linear SVM is the classifier in our experiments,
because this study evaluates different functional network con-
struction for MCI identification. Linear kernel SVM has the
advantages of simple use and it is convenient for the compar-
ison of experimental results.

Due to the limited number of samples in the experiments,
we use the leave-one-out cross-validation method to evaluate
the performance of the proposed method. Specifically, one
subject is used for testing while the remaining subjects are
used for training the model. We do not want the training set
to participate in the testing process of the model as this leads to
information leakage and artificially high performance of the
model. In feature selection, the training set is further divided
into a set for feature selection and an evaluation set.

Experiments and results

We set up 10 step sizes s = 1, 2,…, 10 and 10 sliding window
lengths L = 10, 20,…, 100. LASSO l feature selection param-
eter is set within (0, 1). Linear classifier parameter C of SVM
is set to one. In this study, a nested leave-one-out cross-
validation method is used to determine the model parameter
values. This method takes any sample as the test sample and
the rest as the training sample. Thus, we can use the training
samples to find the optimal classification model, and uses the
test sample to evaluate the model. In this way, the number of
classifiers corresponding to the sample size and the test results
are obtained. Finally, the average of the test results is calcu-
lated to measure the performance of the model. However, to
determine the value of characteristic selection parameters and
avoid data leakage, we further divide the training sample into
one sample for evaluation test and the rest sample for model
training. In this way, the repeated training model is used to
select the optimal super-parameter, and finally, the original
sample is utilized to test the optimal super-parameter model.
Classification accuracy (ACC), sensitivity (SEN), specificity
(SPEC), Youden index (YI), F-score, and balanced accuracy
(BAC) are used as evaluation metrics to assess the obtained
results. These evaluation metrics are calculated through true
positive (TP), false positive (FP), true negative (TN), and false
negative (FN) rates:

ACC ¼ TP þ TNð Þ= TP þ TN þ FP þ FNð Þ;
SEN ¼ TP= TP þ FNð Þ;
SPEC ¼ TN= TN þ FPð Þ;

YI ¼ SEN þ SPEC−1;

precision ¼ TP
TP þ FP

;

recall ¼ TP
TP þ FN

;

F−score ¼ precision� recall
precisionþ recall

;

BAC ¼ 0:5� recall þ SPECð Þ:

Receiver operating characteristic curve (ROC) is another
used metric to evaluate the performance of the proposed mod-
el. It reflects the comprehensive index of specificity and sen-
sitivity. The larger the area under the curve (AUC) is, the
better the model’s classification performance will be.

Table 2 summarizes the comparative experimental results
of different network construction methods in six classification
tasks: LMCI vs. NC, EMCI vs. NC, SMC vs. NC, LMCI vs.
EMCI, LMCI vs. SMC and EMCI vs. SMC. In this study, four
network construction methods are compared, namely: s-LON,
s-HON, d-LON, and d-HON. The classification performances
with and without using LASSO feature selection are shown in
Fig. 4. When the window length is set to 50 and the step size is

Table 2 Experimental results of different network construction
methods in six classification tasks

Data Method ACC SEN SPEC YI F-score BAC AUC

SMC
vs.
NC

s-LON 0.56 0.583 0.603 0.175 0.648 0.476 0.554

s-HON 0.625 0.602 0.689 0.297 0.718 0.592 0.698

d-LON 0.732 0.698 0.742 0.460 0.744 0.694 0.754

d-HON 0.789 0.746 0.804 0.543 0.79 0.796 0.834

EMCI
vs.
NC

s-LON 0.601 0.643 0.647 0.284 0.494 0.53 0.587

s-HON 0.721 0.703 0.734 0.422 0.632 0.588 0.703

d-LON 0.783 0.745 0.786 0.53 0.728 0.672 0.794

d-HON 0.803 0.794 0.856 0.654 0.826 0.768 0.826

LMCI
vs.
NC

s-LON 0.623 0.616 0.675 0.29 0.628 0.63 0.618

s-HON 0.742 0.69 0.763 0.456 0.728 0.684 0.732

d-LON 0.796 0.762 0.842 0.612 0.822 0.752 0.784

d-HON 0.852 0.805 0.874 0.673 0.864 0.826 0.870

LMCI
vs.
EMCI

s-LON 0.589 0.662 0.684 0.342 0.688 0.494 0.564

s-HON 0.654 0.724 0.781 0.513 0.73 0.628 0.611

d-LON 0.721 0.735 0.796 0.538 0.862 0.704 0.743

d-HON 0.788 0.796 0.847 0.647 0.914 0.750 0.825

LMCI
vs.
SMC

s-LON 0.642 0.621 0.643 0.253 0.43 0.552 0.628

s-HON 0.713 0.694 0.74 0.434 0.652 0.694 0.743

d-LON 0.79 0.745 0.833 0.573 0.708 0.768 0.771

d-HON 0.843 0.823 0.876 0.692 0.89 0.804 0.866

EMCI
vs.
SMC

s-LON 0.618 0.652 0.705 0.354 0.672 0.568 0.621

s-HON 0.696 0.676 0.736 0.416 0.648 0.662 0.682

d-LON 0.743 0.703 0.792 0.494 0.73 0.69 0.753

d-HON 0.802 0.794 0.851 0.645 0.866 0.778 0.831
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set to 4, and the best results are obtained with the LASSO
feature selection method. We constructed the brain network
with the d-HON method, and the experimental results of the
six classification tasks without using the feature selection
method and using the LASSO feature selection method are
compared in Fig. 5. The effect of different window lengths
on the experimental results is also investigated. In the six
classification tasks, the AUC values of the different length
and windows are shown in Fig. 6. In the d-HON method, we
report the selected features of three classification tasks LMCI
vs. NC, EMCI vs. NC and SMC vs. NC. The top 10 selected
brain regions with the highest frequency of occurrence of each
classification task are illustrated in Fig. 7.

As shown in Fig. 7, the most frequently identified 10 re-
gions for LMCI vs. NC classification task are right superior
gyrus, left and right medial frontal orbital gyrus, right inferior
frontal orbital gyrus, left posterior cingulate gyrus, left and
right hippocampus, right parahippocampal gyrus, left superior
occipital gyrus and left angular gyrus. The most frequently
identified 10 regions for EMCI vs. NC task are right superior
frontal gyrus, left inferior frontal orbital gyrus, right gyrus
rectus, left posterior cingulate gyrus, left and right hippocam-
pus, right parahippocampal gyrus, left cuneus, right superior
occipital gyrus and left middle temporal gyrus. The top 10
identified regions with the highest frequency for SMC vs.
NC task are right superior frontal gyrus, left and right middle
frontal gyrus, left and right middle frontal orbital gyrus, left

and right hippocampus, right cuneus, left lingual gyrus and
left middle temporal gyrus. Table 3 shows the comparison of
this paper with other different methods. We can observe that
our proposedmethod has achieved promising performance for
the early identification of MCI.

Discussion

Table 2 shows the results of different classification tasks. We
observe that the d-HON method achieves the best classifica-
tion results in the six classification tasks. The best accuracy
and AUC results for LMCI vs. NC classification are 85.2%
and AUC is 0.87, respectively, which are higher than EMCI
vs. NC and SMC vs. NC classification results. The reason is
that LMCI brain function degradation is more severe than
EMCI and SMC, so the classification feature is more discrim-
inative using the proposedmodel. Results in Table 2 show that
dynamic functional network and high-order functional net-
work methods improve the classification accuracy by 13.8%
and 6.9% on average compared with the static functional net-
work and the low-order functional network methods, respec-
tively. It can be seen that the dynamic high-order network
model improves the disease classification due to considering
dynamic and high-order characteristics of brain network.
Similarly, it can be seen from the ROC curve in Fig. 4 that
the d-HON method achieves the best classification effect

Fig. 4 ROC curve results of different network construction methods in six classification tasks
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Fig. 5 The results of with and without feature selection methods in six classification tasks

Fig. 6 TheAUCvalues of asynchronous length and different windows in six classification tasks, (gray dotted line is the average of the results of 10 steps)
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among the other four methods. We also analyze the effect of
feature selection method on the performance of our model.
Compared with the method without feature selection, it can
be seen from Fig. 5 that adding LASSO feature selection

method improves the classification accuracy by 9.6%. We
also experiment on different window lengths and asynchro-
nous lengths, as shown in Fig. 6. The results show that the
window length between 40 and 60 have better classification

LMCI EMCI and SMC 

LMCI and SMC 

EMCI and SMC

LMCI and EMCI 

Only LMCI

Only EMCI

Only SMC

Fig. 7 For LMCI vs. NC, EMCI vs. NC and SMC vs. NC classification
task, we select the top 10 most brain regions using statistical occurrences.
The red area represents the three-group classification task appear in high
frequency. The purple area in LMCI vs. NC and SMC vs. NC appear in

high frequency. The green area in EMCI vs. NC and SMC vs. NC appear
in high frequency. Yellow in LMCI vs. NC and EMCI vs. NC appear in a
high frequency area, other colors said only in each classification task of
statistics in high frequency

Table 3 Comparison of other methods

Reference Subject Method Task ACC SEN SPEC

(Supekar et al. 2008) 21 AD,18NC Wavelet correlation networks,
90 ROIs, clustering coefficient

– – 0.72 0.78

(Chen et al. 2011) 20 AD,15MCI,20NC PCC, 116 ROIs,
large-scale network

AD vs. MCI + NC 0.82 0.85 0.80

MCI vs.NC 0.91 0.93 0.90

(Challis et al. 2015) 27 AD,50MCI,39NC Covariance, 82ROIs,
Bayesian Gaussian process
logistic regression

AD vs. MCI 0.8 0.7 0.9

MCI vs.NC 0.75 1 0.5

(de Vos et al. 2018) 77 AD,173NC Sparse partial correlation FCNs, 70 ROIs – 0.75 0.79 0.71

Sparse partial correlation dynamic FCNs,
70 ROIs

– 0.78 0.83 0.73

Amplitude of low frequency fluctuation – 0.76 0.71 0.82

Combined – 0.79 0.86 0.71

This work 38LMCI,44EMCI,
44SMC,44NC

d-HON, 90 ROIs LMCI vs. NC 0.852 0.805 0.874

EMCI vs.NC 0.803 0.794 0.856

SMC vs. NC 0.789 0.746 0.804
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performance and this also follows previous studies (Hutchison
et al. 2013). For this work, we find that the best values of
window length and step size are 50 and 4, respectively, which
yields the best classification results.

According to the high-frequency brain regions extracted by
the d-HON method, the brain regions of the three tasks are
hippocampus and right superior frontal gyrus, as shown in red
area in Fig.7. Relevant studies have found that left and right
hippocampus are playing an important role in helping human
short-term memory, long-term memory, and spatial localiza-
tion, and are associated with the occurrence and development
of AD. The right superior frontal gyrus is closely associated
with depression, and studies have found that depression is also
closely associated with AD. The left posterior cingulate gyrus
and the right parahippocampal gyrus are shown in Fig. 7 in
yellow area, the left middle temporal gyrus in green area, and
the right middle frontal gyrus in purple area. The results of
previous studies are further verified (Echavarri et al. 2011).
These common high-frequency brain regions have been re-
ported in AD-related studies.

Moreover, existing studies have shown disease-related bio-
markers change in different stages of MCI. For example,
Jagust et al. (Jagust et al. 2015) found florbetapir was associ-
ated with cognitive change in normal subjects only, whereas
in the LMCI group, fluorodeoxyglucose (FDG) was more
closely associated with cognitive change than was florbetapir.
This follows a model in which amyloid changes precede neu-
rodegeneration (measured by FDG), which is tied to subse-
quent cognitive decline. Also, Li et al.(Li et al. 2017) found
there are cortical areas with significant association with Aβ
d e p o s i t i o n . S p e c i f i c a l l y , RO I s i n C 1 ( e . g . ,
rh_inferior_temporal) exhibited steady negative significant
correlation trends among healthy control (CN) and EMCI
groups; C2(e.g., bi_fusiform, bi_precuneus, bi_superior_ tem-
poral, bi_lateral_occipital, lh_medialorbitofrontal,
lh_isthmuscingulate, rh_superamarginal, rh_middle_ tempo-
ral) showed reversed correlation in EMCI stage; C3(e.g.,
lh_inferior_temporal, lh_middle_temporal, lh_banks_of_the_
S u p e r i o r _ s e m p o r a l _ s u - l c u s ( l h _ b a n k s s t s ) ,
rh_inferior_parietal) showed such reversed relationship also
in EMCI stage, which were maintained in the LMCI stage;
C4(e.g., lh_inferior_parietal) showed negative correlation on-
ly in the LMCI stage. On the other hand, ROIs in C5 (e.g.,
r h _ p o s t c e n t r a l , r h _ t r a n s v e r s e t e m p o r a l ,
rh_precentral)presented positive significant correlation in
CN stage; C6(e.g., bi_entorhinal, bi_temporal_pole) showed
such correlation in the AD stage.

In SMC vs. NC classification process, its particular brain
regions for frontal medial gyrus, right cuneus and right lingual
gyrus. This study found that the right frontal medial gyrus is
related to working memory. The left frontal medial gyrus is
mainly responsible for handling and processing in Chinese. In
addition, it has function of memory and information

coordination and find that its activity intensity gradually in-
creased with the increase of complexity of text. The main
manifestation of SMC is presented with cognitive impairment,
in line with the performance of the SMC memory loss. Left
lingual gyrus is mainly responsible for human visual percep-
tion, but studies have also found that lingual gyrus is involved
in logical analysis. The right cuneus processes visual informa-
tion, and studies have found that visual acuity is associated
with spatial orientation. During the EMCI vs. NC classifica-
tion, the unique brain regions are the left inferior frontal orbital
gyrus, the right gyrus rectus, left cuneus and right superior
occipital. Left inferior frontal orbital gyrus is mainly related
to language processing. Some studies have found that the right
gyrus rectus is related to AD, the left cuneus is mainly related
to visual information processing, and some studies have found
that the right superior occipital gyrus is related to MCI. In the
classification process of LMCI vs. NC, its unique brain re-
gions are right inferior frontal orbital gyrus, left superior oc-
cipital gyrus, and left angular gyrus. Some studies have found
that the left superior occipital gyrus is related to MCI, while
some studies have found that the left angular gyrus is related
to MCI. Resection of the angular gyrus will lead to visual and
auditory image disconnection, which will cause dyslexia and
audio-visual aphasia. These results prove that the model is not
only superior in classification results but also interpretable and
can provide clinical diagnostic criteria.

Conclusions

In this paper, a new sliding window method is used to con-
struct a dynamic functional network. Brain network dynamics
provides richer information. This paper considers higher-order
characteristics of the brain network and constructs a higher-
order brain network through topology aware between brain
networks. The model then uses local weight clustering to ex-
tract effective features of dynamic high-order networks and
usies LASSO for network feature selection. In the six classi-
fication tasks, the proposed method obtains the best results.
However, our study has some limitations. First, we do not
consider biological mechanisms in our model and is purely
data driven. Second, our model only uses single modality
imaging (R-fMRI) and the results should be replicated on a
larger database. Using multimodal imaging and more training
samples can potentially improve the accuracy of classification.
We will address these limitations in our future work.
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